A Generalized Avez-seifert Theorem for the Lorentz Force Equation

نویسندگان

  • ETTORE MINGUZZI
  • E. MINGUZZI
چکیده

The classical Avez-Seifert theorem is generalized to the case of the Lorentz force equation for charged test particles with fixed charge-to-mass ratio. Given two events x0 and x1, with x1 in the chronological future of x0, and a ratio q/m, it is proved that a timelike connecting solution of the Lorentz force equation exists provided there is no null connecting geodesics and the spacetime is globally hyperbolic. As a result, the theorem answers affirmatively to the existence of timelike connecting solutions for the particular case of Minkowski spacetime. Moreover, it is proved that there is at least a C connecting curve that maximizes the functional I[γ] = ∫ γ ds + q/(mc)ω over the set of C future-directed non-spacelike connecting curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Existence of Maximizing Curves for the Charged-particle Action

The classical Avez-Seifert theorem is generalized to the case of the Lorentz force equation for charged test particles with fixed charge-to-mass ratio. Given two events x0 and x1, with x1 in the chronological future of x0, and a ratio q/m, it is proved that a timelike connecting solution of the Lorentz force equation exists provided there is no null connecting geodesic and the spacetime is glob...

متن کامل

Solutions to the Lorentz Force Equation with Fixed Charge-to-mass Ratio in Globally Hyperbolic Spacetimes

We obtain an extension of the classical Avez-Seifert theorem, for trajectories of charged test particles with fixed charge-to-mass ratio. In particular, given two events x0 and x1, with x1 in the chronological future of x0, we find an interval I =]− R, R[ such that for any q/m ∈ I there is a timelike connecting solution of the Lorentz force equation.

متن کامل

Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras

In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...

متن کامل

Nonstandard Lorentz Space Forms

In their recent paper [8], Kulharni and Raymond show that a closed 3-manifold which admits a complete Lorentz metric of constant curvature 1 (henceforth called a complete Lorentz structure) must be Seifert fibered over a hyperbolic base. Furthermore on every such Seifert fibered 3-manifold with nonzero Euler class they construct such a Lorentz metric. Moreover the Lorentz structure they constru...

متن کامل

Generalized multivalued $F$-contractions on non-complete metric spaces

In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well-known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003